Sparse Auto-Calibration for Radar Coincidence Imaging with Gain-Phase Errors
نویسندگان
چکیده
Radar coincidence imaging (RCI) is a high-resolution staring imaging technique without the limitation of relative motion between target and radar. The sparsity-driven approaches are commonly used in RCI, while the prior knowledge of imaging models needs to be known accurately. However, as one of the major model errors, the gain-phase error exists generally, and may cause inaccuracies of the model and defocus the image. In the present report, the sparse auto-calibration method is proposed to compensate the gain-phase error in RCI. The method can determine the gain-phase error as part of the imaging process. It uses an iterative algorithm, which cycles through steps of target reconstruction and gain-phase error estimation, where orthogonal matching pursuit (OMP) and Newton's method are used, respectively. Simulation results show that the proposed method can improve the imaging quality significantly and estimate the gain-phase error accurately.
منابع مشابه
Auto-focus for Under-sampled Synthetic Aperture Radar
We investigate the effects of phase errors on undersampled synthetic aperture radar (SAR) systems. We show that the standard methods of auto-focus, which are used as a postprocessing step, are typically not suitable. Instead of applying auto-focus as a post-processor we propose using a stable algorithm, which is based on algorithms from the dictionary learning literature, that corrects phase er...
متن کاملBlind Gain and Phase Calibration via Sparse Spectral Methods
Blind gain and phase calibration (BGPC) is a bilinear inverse problem involving the determination of unknown gains and phases of the sensing system, and the unknown signal, jointly. BGPC arises in numerous applications, e.g., blind albedo estimation in inverse rendering, synthetic aperture radar autofocus, and sensor array auto-calibration. In some cases, sparse structure in the unknown signal ...
متن کاملArray error calibration methods in downward-looking linear-array three-dimensional synthetic aperture radar
In order to achieve high-precision three-dimensional (3-D) imaging with an airborne downward-looking linear-array 3-D synthetic aperture radar (LA-3D-SAR), a uniform virtual antenna array can be obtained by aperture synthesis of the cross-track sparse multiple-inputmultiple-output array. However, the actual 3-D imaging quality is unavoidably degraded by array errors such as the multichannel amp...
متن کاملSparse Frequency Diverse MIMO Radar Imaging for Off-Grid Target Based on Adaptive Iterative MAP
The frequency diverse multiple-input-multiple-output (FD-MIMO) radar synthesizes a wideband waveform by transmitting and receiving multiple frequency signals simultaneously. For FD-MIMO radar imaging, conventional imaging methods based on Matched Filter (MF) cannot enjoy good imaging performance owing to the few and incomplete wavenumber-domain coverage. Higher resolution and better imaging per...
متن کاملLinear Array Sar 3 - D Imaging
Linear array synthetic aperture radar (LASAR) is a promising radar 3-D imaging technique. In this paper, we address the problem of sparse recovery of LASAR image from under-sampled and phase errors interrupted echo data. It is shown that the unknown LASAR image and the nuisance phase errors can be constructed as a bilinear measurement model, and then the under-sampled LASAR imaging with phase e...
متن کامل